Prevention




Because of the widespread use and importance of iron and steel products, the prevention or slowing of rust is the basis of major economic activities in a number of specialized technologies. A brief overview of methods is presented here; for detailed coverage, see the cross-referenced articles.

Rust is permeable to air and water, therefore the interior metallic iron beneath a rust layer continues to corrode. Rust prevention thus requires coatings that preclude rust formation.

Rust-resistant alloysedit

Stainless steel forms a passivation layer of chromium(III) oxide. Similar passivation behavior occurs with magnesium, titanium, zinc, zinc oxides, aluminium, polyaniline, and other electroactive conductive polymers.citation needed

Special "weathering steel" alloys such as Cor-Ten rust at a much slower rate than normal, because the rust adheres to the surface of the metal in a protective layer. Designs using this material must include measures that avoid worst-case exposures, since the material still continues to rust slowly even under near-ideal conditions.citation needed

Galvanizationedit

Galvanization consists of an application on the object to be protected of a layer of metallic zinc by either hot-dip galvanizing or electroplating. Zinc is traditionally used because it is cheap, adheres well to steel, and provides cathodic protection to the steel surface in case of damage of the zinc layer. In more corrosive environments (such as salt water), cadmium plating is preferred. Galvanization often fails at seams, holes, and joints where there are gaps in the coating. In these cases, the coating still provides some partial cathodic protection to iron, by acting as a galvanic anode and corroding itself instead of the underlying protected metal. The protective zinc layer is consumed by this action, and thus galvanization provides protection only for a limited period of time.

More modern coatings add aluminium to the coating as zinc-alume; aluminium will migrate to cover scratches and thus provide protection for a longer period. These approaches rely on the aluminium and zinc oxides reprotecting a once-scratched surface, rather than oxidizing as a sacrificial anode as in traditional galvanized coatings. In some cases, such as very aggressive environments or long design life, both zinc and a coating are applied to provide enhanced corrosion protection.

Typical galvanization of steel products which are to be subjected to normal day-to-day weathering in an outside environment consists of a hot-dipped 85 µm zinc coating. Under normal weather conditions, this will deteriorate at a rate of 1 µm per year, giving approximately 85 years of protection.citation needed

Cathodic protectionedit

Cathodic protection is a technique used to inhibit corrosion on buried or immersed structures by supplying an electrical charge that suppresses the electrochemical reaction. If correctly applied, corrosion can be stopped completely. In its simplest form, it is achieved by attaching a sacrificial anode, thereby making the iron or steel the cathode in the cell formed. The sacrificial anode must be made from something with a more negative electrode potential than the iron or steel, commonly zinc, aluminium, or magnesium. The sacrificial anode will eventually corrode away, ceasing its protective action unless it is replaced in a timely manner.

Cathodic protection can also be provided by using a special-purpose electrical device to appropriately induce an electric charge.

Coatings and paintingedit

Rust formation can be controlled with coatings, such as paint, lacquer, varnish, or wax tapes that isolate the iron from the environment. Large structures with enclosed box sections, such as ships and modern automobiles, often have a wax-based product (technically a "slushing oil") injected into these sections. Such treatments usually also contain rust inhibitors. Covering steel with concrete can provide some protection to steel because of the alkaline pH environment at the steel–concrete interface. However, rusting of steel in concrete can still be a problem, as expanding rust can fracture or slowly "explode" concrete from within.citation needed

As a closely related example, iron bars were used to reinforce stonework of the Parthenon in Athens, Greece, but caused extensive damage by rusting, swelling, and shattering the marble components of the building.citation needed

When only temporary protection is needed for storage or transport, a thin layer of oil, grease, or a special mixture such as Cosmoline can be applied to an iron surface. Such treatments are extensively used when "mothballing" a steel ship, automobile, or other equipment for long-term storage.

Special antiseize lubricant mixtures are available, and are applied to metallic threads and other precision machined surfaces to protect them from rust. These compounds usually contain grease mixed with copper, zinc, or aluminium powder, and other proprietary ingredients.citation needed

Bluingedit

Bluing is a technique that can provide limited resistance to rusting for small steel items, such as firearms; for it to be successful, a water-displacing oil is rubbed onto the blued steel and other steel.

Inhibitorsedit

Corrosion inhibitors, such as gas-phase or volatile inhibitors, can be used to prevent corrosion inside sealed systems. They are not effective when air circulation disperses them, and brings in fresh oxygen and moisture.

Humidity controledit

Rust can be avoided by controlling the moisture in the atmosphere. An example of this is the use of silica gel packets to control humidity in equipment shipped by sea.

Comments

Popular posts from this blog

Rust

Economic effect

Chemical reactions